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UNSTEADY CAVITATIONAL FLOW OVER A DISK* 

E.L. AMRGMIN and V.A. BIJSHKGVSKII 

A method is proposed for calcuating the unsteady flow over bodies without 
using simplified assumptions about the form of these and the cavity 
behind them, the velocity of motion of the body or the pressure of the 
fluid. Calculations are given of axisymmetric unsteady cavities behind 
the disk for various modes of motions and changes of pressure in the 
cavity. 

Previously calculations of unsteady cavitational flows were carried out only withsubstantia: 
simplifications both in plane /l/ and in axisymmetric flows (in the latter case only for thin 
cavities /2-5/or infinite cavities /6, 7/. 

1. A disk moves in a medium at rest with velocity V. The fluid is assumed to be perfectly 
wightless and incompressible , and the flow is assumed to be irrotational. Outside the body 
and its cavity we can introduce a scalar velocity potential 0 in the form of a harmonic function 
satisfying the slip condition 

aal 
7x - ( \‘, Vs) = 0 

on s = Sb d & i Sj. Here N is the unit vector of the outside normal to the surface S consisting 
of the wetted disk surface Sb, the surface of the cavity S,. and the surface SI closing the 
cavity of the imaginary disk /8/. I's is velocity of motion of the point on s: Vs Isb= I'. 

The presence of a fictitious body enables us to confine ourselves to studying the cavity 
reaction to a change in the flow around the body, without considering the pulsation of the 
cavity tail which is observable even in steady flow. 

The Cauchy-Lagrange condition of constant pressure is satisfied on S,,i.e. 

where p is the fluid density, v is its velocity in the absolute system of coordinates, and p 
is the pressure difference in the cavity and the unperturbed flow. 

It is convenient to use, as in /9/, a coordinate system attached to the disk and to make 
V the unit of velocity. Denoting by U the fluid velocity in that coordinate system, the 
condition of constant pressure in the cavity can be written in the form 

(1.2) 

.z = D I.,-‘dV.‘dr, q = 1,V-‘, Vo = l’(O), 7 = fl,D- 

(where r is dimensionless time, D is the disk diameter, o is the cavitation coefficient, and 
the velocity potential is taken relative to the product W). 

Let p, V be given functions of 7. If the quasistationary approach is used in calculations 
of cavitation, i.e. the last two terms in (1.2) are neglected, it is convenient to specify 
the sequence of cavity lengths 

(L,, L,, .) (1.3) 
and to obtain the respective sequence (0,. O*, 1 from the solution of the problem. The complete 
Eq.Cl.2) contains three parameters, each of which affects the cavity length o,o,n, which all 
depend on 7. Hence it is convenient in calculations of unsteady axisymmetric cavities to 
specify the sequence of values of (1.31, and use these to find the respective (T~,Q,...). The 
sequence (1.3) cannot be entirely arbitrary, since the sequence (rl,t,. ..) must retain monotonous. 

The determination of the form of each cavity length is a non-linearproblem, solved by the 
method of successive approximations (similar to those used in /8, lo/). In each approximation 
the Neuman problem is solved for the Laplace equation for @ with condition ('1.1) outside S; 
then the discrepancy in (1.2) is checked, and if it exceeds an a priori specified positive 
number, it is corrected using the linearized conditions (1.1) and (1.2) 

8Q aCh 
YW+ T+rl$=o (1.4) 
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Here A, T are the tangents to the equipotential streamlines f'- z+--llo,r+- b--1_; the quantities 
explicitly dependent on time with zero subscript relate to Q, and with a minus subscript to 
%the derivatives of these quantitieswith respect to T are denoted by dots; h is the distance 
between the required and the known surfaces measured along N; and CF is the perturbation of CD. 
The functionals @, q are the potentials of a simple layer. 

The unkown function in (1.51 is the density q of the potential r+ and the number r‘. 
Since when %=L (the time point in previous calculation) the flow over the body with a cavity 
has already been determined, the calculation of @_ does not in principle present difficulties. 
It was assumed in deriving (1.5) that the required time r, (corresponding to the cavity length 

LK) is not much different from its approximate value Q, i.e. I T’IT. Ia I . For each length L, 
the value of r. in the initial approximation is selected to minimize the maximum value of the 
discrepancy in (1.21, without making more precise the form of SC; the discrepancy in the initial 
approximation is treated as a function of only one parameter rO. In subsequent approximations 
7 is added to 50. 

The singular integral Eq.(1.5) is adjusted by using th@ Keldysh-Sedov formula /ll/, and 
from the additional condition required for its use we determine T', and for the construction of 
a new approximation to the boundary of cavity of length Lx (1.41 we use (1.4) with condition 
h (0) = 0 on the cavitating body. 

Compared with the quasisteady approach the volume of calculations increases due both to 
the need for each T>O to recall not less than two fields (0, and due to the need begin the 
calculations from any 3, and that to determine @ one must begin the calculations from some 
steady cavitational flow (when aJ, = 5_). 

2. Some results of calculations of the flow over a disk are presented below for various 
laws of variation of P(T) and I'(5). 

0. (r: = @, '1(T) = (f + @T)-*, 0 (T) = (J (0) '12 (2.f) 
a (Ti = 9. n (1) = 1. 0 (7) = 0 (0) (1 + W-2 (2.2) 
CL (T! = II. n ('I) = 1, 0 (T) = 9(O)+ A sin (07) (2.3) 

where p. A.o are constants. For the same @ the motion (2.1) of o varies only on account of 
acceleration, and in (2.2) the variation is due only to the change of pressure at constant 
velocity V. In all calculations o(U)= 0.136 was assumed. 

The dependence of the length and its width B of the cavity and of the coefficient of drag 

CX on (I is shown in Fig.1. The solid curves 1, 2 and 3 relate to braking of the disk in the 
mode (2.1) for P= -0.0~2; --Cl.02;--@.f. Curves o correspond to calculations using the hypothesis 
of pseudo-steadiness, 

The dash lines show the results of mode (2.2) fcr p= -0.02. It is seen that the cavities 
differ little from steady for mode (2.2) (for the same 01. The small difference in C, is due 
to the cavity tail having a lesser effect on the Pressure distribution in the cavity. The 
formof the curves L (nj and B(a) show ninFig.1 correspondsqualitativelytothelineartheory/4,5/, 
and for theexample calculatedinNesteruk's dissertation for t/D> f0 and @= -0.f some small 
cavity enlargement occurred at the beginning of the motion (comparison of cavities behind 
various bodies for small D is admissible, since the form of the cavities depend only slightly 
on the form of the cavitating body). 
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The form of cavities for mode (2.1) is shown in Fig.2 for the same a but various 8., The 
solid lines relate to steady cavities, the dash lines for 3= -o.i, and the dash-dot lines for 

@ = -0.02, The cavities at (r= 0.f36, 0.25, 0.5 are denoted by numerals 1, 2, and 3. 
In Fig.3 the dependence L(c) for A -0.023;0=0.063 for mode (2.3) are shown by solid lines, 

and the dash lines relate to calculations of the steady state for the same a W. The dis- 

tribution of r-6 along the cavity for mode (2.1) for 3= -0.02 are given in Fig.4; curves 

1 and 2 relate to z= 17 and 23. 
The convenience of judging the degree of unsteadiness of cavities using the value of r 

is obvious. 
We may add that owing to the weak dependence of the form of the cavity on the shape of 

the cavitating body results of unsteady cavitational flows given here can be generalized 
considerably. 
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THE STEADY SPECTRA OF PARTICLES IN DISPERSIBLE SYSTEMS 
WITH COAGULATION AND FRAGMENTATION* 

V.N. PISKUNOV 

The formation of a steady dimensional distribution of particles (particle 
spectra) is dispersible systems with coagulation and fragmentation is 
considered. The reiation between versions of the kinetic erI;lation that 
defines these processes is traced. An analytical solution is obtained 
for the parametric set of coagulation coefficients and the velocities of 
paired fragmentation. The steady spectrum of particles is investigated 
in the case when the fragmentation is of the multiple type. 

The kinetic equation of coagulation with fragmentation in the case when the rate of particle 
supply to the system to compensate for the fragmented particles is linear with respect to their 
concentration was first formulated in /l/. The fragmentation process can stabilize a coagulating 
dispersed aystem, and result in the formation of steady spectra. Some analytical results on 
the behaviour of systems with coagulation and fragmentation were obtained in /2-S/. 

1. The variation with time t of the particle spectrum in three-dimensionally homogeneous 
systems with coagulation and fragmentation is defined by the kinetic equation 

dc (g. f),r3f = s (c; g. I) + Q (c: g. f) 
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